
Parallel Visualization and Analysis with ParaView on a Cray XT4

John Patchett, Los Alamos National Laboratory
James Ahrens, Los Alamos National Laboratory

Sean Ahern, Oak Ridge National Laboratory
David Pugmire, Oak Ridge National Laboratory

Abstract:Scientific data sets produced by modern supercomputers like ORNL’s
Cray XT 4, Jaguar, can be extremely large, making visualization and analysis more
difficult as moving large resultant data to dedicated analysis systems can be pro-
hibitively expensive. We share our continuing work of integrating a parallel visu-
alization system, ParaView, on ORNL’s Jaguar system and our efforts to enable
extreme scale interactive data visualization and analysis. We will discuss porting
challenges and present performance numbers.

Keywords:Cray XT4, Interactive Distance Visualization, ParaView

1 Introduction

Jaguar is a Cray XT4 with 7,832 compute nodes
each with 4 cores and 8GB of memory, located in
Oak Ridge, Tennessee. Jaguar is currently ranked
#8 in the Top 500.

Jaguar, and other machines like it, enable in-
creasingly larger data sets. Whether scientists are
producing extremely massive data or small data they
still have a requirement for analysis. Analysis is of-
ten difficult for larger data and it is further compli-
cated when the user is distant to the data. Data sets
that are too large to ship and/or analyze on a single
desktop require a parallel analysis tool and a high
performance computer to run on.

Traditionally, specialized visualization resources
capable of interactively handling large-scale visual-
ization operations are co-located with the supercom-
puters they support. These specialized resources,
usually PC clusters with graphics cards, are becom-
ing less useful for a number of reasons. They are
expensive to purchase and maintain and as the sizes
of compute machines increase, so must the size and
expense of these specialized resources. The specialty
visualization resources are good for local users with
high bandwidth connections into them and they are
also necessary for driving other specialty hardware
like power walls, caves and raves by providing high
frame rates.

For remote users like those at LANL using

Jaguar, they are limited to significantly lower frame
rates due to the network, so the ability of the spe-
cialty hardware to produce such high frame rates
does not help much due to Amdahl’s law. Addi-
tionally, the specialty hardware can be an irrita-
tion, as it requires another account on an additional
machine that has its own rules of use, possibly dif-
ferent schedulers, and certainly other idiosyncrasies.

Our primary scientific contact, and Jaguar user,
for this study was Mathew Maltrud. He uses in-
teractive visualization as part of his standard work
flow and we studied the use of interactive visualiza-
tion via ParaView on Jaguar. Mat uses Jaguar to
run the Parallel Ocean Program (POP) [2], which
produces more data on Jaguar in a day than can be
streamed back to LANL in a reasonable time frame,
if at all. He therefore is faced with doing visual-
ization and analysis at a distance. We tailored our
usability study to his visualization needs.

We used ParaView [1], an open source, parallel
visualization tool to study whether interactive dis-
tance visualization on large machines like Jaguar is
technically feasible and worth pursuing. The largest
barrier to using these machines interactively for visu-
alization is the emphasis on batch scheduling, which

1

is generally configured to provide very little quality
of service to the waiting user.

We were awarded with an NCCS Directors Dis-
cretionary Project to port ParaView to Jaguar. This
paper will summarize our results to date.

We are contributing to visualization on the Cray
XT4 by looking at interactive distance visualization
using parallel rendering with standard OpenGL us-
ing OSMesa at a distance. We are also presenting
ParaView on the Cray XT4.

2 Previous Work

Visualization work had already been done on the
XT3 [4] and XT4 [7], but it did not include inter-
active remote visualization. These two visualization
papers were presented at CUG 2008. Moreland et
al [4] presented their work porting ParaView to the
Cray XT3, they presented numbers for batch pro-
cessing of a very large data set. Pugmire et al [7]
presented their work on porting VisIt, a parallel vi-
sualization application, to the Cray XT4. They pre-
sented both batch processing and interactive pro-
cessing on extremely large data sets.

Mesa’s offscreen rendering component, OSMesa,
allows GL rendering into user allocated memory [6].
OSMesa allows graphics on machines without graph-
ics hardware, machines like Jaguar. Work on OS-
Mesa is a core enabler for our work.

3 ParaView

ParaView is a VTK based, open source, serial and
parallel visualization tool. In a parallel mode, it is
best run in a client server configuration where a par-
allel server is started using MPI and a client connects
to it over sockets. The client, data server and ren-
der servers can all be run on separate machines and
then communicate with each other over sockets [8].
Our goal with Jaguar was to run the data and ren-
der servers on Jaguar and run the client on a local
machine.

3.1 Ineractive vs. Batch

Supercomputers primarily rely on batch processing
for process scheduling. The problems arise when we
try and use batch schedulers in ways that weren’t
necessarily envisioned in their design, such as in-
teractive visualization. The interactivity model for

scheduling appears to have been designed for debug-
ging and it is less than adequate for visualization and
analysis. It creates too much time between the hy-
pothesis and verification analysis loop. Batch based
visualization is an iterative process that involves
editing a script, submitting a job, waiting, looking at
an image or video, modifying the script and starting
the process again. Scientists spend more time inter-
acting with the bureaucracy of the computer sched-
uler than they do with their data. The visualization
process is significantly improved by interactivity and
this improvement facilitates scientific discovery.

3.2 Building and Running ParaView

Running ParaView on the Cray XT4 was easier than
it was historically for the XT3. Socket support made
it very convenient to connect the client to the back-
end for interactivity. We desired interactivity over
batch processing, so we didn’t have to delve into
building and linking against a static python. Cross
compiling for Jaguar was relatively simple and didn’t
require hardly anything but cmake settings. We did
have to build a native ParaView for the Jaguar fron-
tend server using the make pvHostTools target doc-
umented by Moreland et al 2008 [4]. Jaguar has a
set of front end nodes that can be used as launch-
ing points for ssh port forwarding. The problem is a
desktop at LANL is behind several levels of firewalls,
and must connect to a specific Cray XT4 back end
node at ORNL. This is accomplished using ssh port
forwarding.

In order to set up port forwarding the user must
find the hostname that will get assigned process
0. This can be found after getting the interac-
tive allocation by running “aprun -n 1 hostname”.
The user must then start a new ssh tunnel from
the LANL desktop to a Jaguar front end that will
forward the port to the process 0 back end node:
“ssh -L 11111:MPIProc0:11111 Jaguar.ccs.ornl.gov”
This will forward any port 11111 loopback con-
nection to the desktop and send it to MPI Pro-
cess 0 port 11111 through Jaguar.ccs.ornl.gov.

Jaguar
Front
End

Jaguar Back End

client
node in
world

ssh to get an allocation

ssh for port
forwarding

11111

11111

Then the XT4 ParaView server is started: “aprun

2

-n 16 pvserver –use-offscreen-rendering”. A client
will get started on the local desktop. The client con-
nects to localhost port 11111 and is forwarded to the
remote server where the connection is established.

The interactive startup process looks like this:

1. Connect to Jaguar and request an allocation
with qsub.

2. Find hostname of process 0.

3. Start pvserver.

4. Connect to Jaguar forwarding port 11111 to
MPI Process 0.

5. Start a local client.

6. Connect client to localhost port 11111.

This process will have to be repeated for each new
allocation of nodes. The server and client can be
restarted at any time without reconfiguration of the
port forwarding.

4 Approach

We were driven by the use case of our user, whose
models run on a 3600x2400x42 rectilinear grid. He
regularly wants to run a visualization pipeline of
read, isosurface and render of a single variable data
set. This visualization pipeline consists of parallel
reader that supplies data to a parallel isosurfacing
algorithm. This in turn feeds polygons to a parallel
renderer, whose results are composited together to
form a single image. The final image is then sent to
the client application and displayed. This series of
events is run for every image shown on the client,
though through last modification short-circuiting in
the pipeline, some steps can be skipped, speeding up
the process. For instance, the reader does not have
to read on the next iteration, unless the input file is
changed.

4.1 Reading

Poor read scaling was expected, we still have more
work to do optimizing lustre reads. As our tests read
a single monolithic file, we altered the stripe count
to 32 and stripe size to 1 MB, which offered a good
improvement over no striping or a stripe count of 4.
Our user generally has a single file for each variable
in each time step. For good performance on very
large processor counts, in the future, we should alter

ParaView’s reader to restrict the nodes performing
reads and then use the high performance network to
balance the data across the process space.

4.2 Rendering

Rendering is the process of turning 3D geometry
into a 2D image. Rendering using OSMesa, Mesa’s
offscreen rendering interface, was used as Jaguar
lacks graphics hardware. The numbers reported
by Moreland et al. [4] for producing frames of
a 20483 dataset using ParaView batch process-
ing with OSMesa reassured us that we would be
able to get interactive rates in our study. Par-
allel rendering has good scaling properties as it
is trivially parallel. So, given enough proces-
sors for a problem size, we expect, the per pro-
cessor rendering performance should adequate.

 0

 1

 2

 3

 4

 5

 6

 4 8 16 32 64 128 256 512 1024 2048

Ti
m

e
in

 S
ec

on
ds

Number of Processors

Jaguar at ORNL Max Per Node Render Time

"Render.dat" using 1:5

4.3 Compositing

Compositing is the process of gathering fractional
images, rendered on each node in the parallel job,
and assembling them. Jaguar is interconnected us-
ing a Cray SeaStar network. Compositing consists
of both network and CPU time. ParaView uses Z-
depth compositing, so whenever two images over-
lap and need to be combined, each pixel’s z value
has to be compared to find which pixel is closest to
the viewer. We believe the binary swap algorithm
[3] provides a worst case compositing time for an
improved compositor, IceT [5], used in ParaView.
Binary swap’s network consumption asymptotically
approaches 2 * render window size for each process
as the number of processors grows. This means com-
positing is a function of render window size rather

3

than a function of data size.
We ran binary swap scaling tests for a 1024x1024

image composed of 8 bit chars to represent RGBA
and a float for z, totaling 8 MB/image. These tests
made it clear that compositing can be expected to
scale, in terms of not hindering interactive rates.
This is good, as larger data sets will require more
nodes to get rendering performance sufficient for in-
teractive rendering rates. Finally, Results from Par-
aView show the average composite time plateaus at
under .03 seconds per frame for the 400x400 render
window.

4.4 Sending

Once images are composited they must be sent to the
client. Bandwidth between the user and the super-
computer can help or severely impair an interactive
user experience. Bandwidth into LANL is somewhat
restricted for many reasons.

Using NetPIPE we found that the unidirectional
streaming between LANL and a Jaguar compute
node through an ssh tunnel to a back end Jaguar
node is between 10 and 11 Mbps. This is about
1.375 MB/s. The ParaView client machine used for
testing rarely showed more than 1 MB/s bandwidth.
For one of our tests we used a 400x400 Render Win-
dow, which using 8 bits each for RGBA is 640 KB.
From this, we can then estimate that, at best, we
could get a frame from a Jaguar back end node in
approximately 1/2 second + the time to create the
image on Jaguar.

5 Results and Scaling

 0

 1

 2

 3

 4

 5

 6

 4 8 16 32 64 128 256 512 1024

Se
co

nd
s

Pe
r F

ra
m

e

Number of Processors

Jaguar at ORNL to Desktop at LANL Still Render Various Window Sizes

200x200
400x400
600x600
800x800

5.1 Interactive ParaView

We find that getting nodes interactively happens
reasonably quickly for smaller numbers of nodes. We
have gotten up to 2048 processors in less than a
minute. Though there can be down times while get-
ting interactive nodes, we have usually gotten them
pretty quickly. ParaView comes equipped with tools
for handling large data and/or data at a distance like
LOD and client server communications data com-
pression. ParaView can be used to send data, geom-
etry or imagery. The user, while running the tool,
can change these settings easily. If imagery is used,
the fps count will be a function of the network band-
width assuming the supercomputer can keep up.

5.2 Scalability

We ran interactive visualization jobs on as many as
2048 Jaguar processors. Most graphs in this paper
show promising performance scaling. We have not
yet explored IO and this needs to be studied fur-
ther so we can make positive changes to allow for
end to end scalability. Specifically, until we can read
quickly, out of core operations, like time series stored
in single files for each step, will not be very interac-
tive. The previous work on the XT3 and XT4 plus
our work make us believe scaling for interactive vi-
sualization is completely possible on Jaguar.

6 Conclusion

Running ParaView interactively on Jaguar is a pos-
itive improvement for both local and remote users.
We have shown that it is feasible for our user at
LANL to visualize his simulation data created on
jaguar. Local users may face fewer obstacles and
get improved performance, due to their higher band-
width to Jaguar. For future work, we would like to
see higher priority queues that enable interactive vi-
sualization. A more interactive user-friendly qsub
that estimates time to allocation would be very use-
ful. Hopefully, our work will lead to more users
attempting interactive visualization on Jaguar, re-
sulting in quicker turnaround times for visualization
and analysis. As users migrate to using supercom-
puting platforms for visualization, we expect future
research possibilities in this area.

4

7 References

References

[1] James Ahrens, Berk Geveci, and Charles Law.
Paraview: An end user tool for large data visu-
alization. In Visualization Handbook. Academic
Press, 2005.

[2] J. K. Dukowicz and R. D. Smith. Implicit
free-surface method for the Bryan-Cox-Semtner
ocean model. Journal of Geophysical Research,
99:7991–8014, 1994.

[3] Kwan liu Ma, James S. Painter, and Charles D.
Hansen. Parallel volume rendering using binary-
swap compositing. IEEE Computer Graphics
and Applications, 14:59–68, 1994.

[4] Kenneth Moreland, David Rogers, John Green-
field, Berk Geveci, Patrick Marion, Alexander
Neundorf, and Kent Eschenberk. Large scale vi-
sualization on the cray xt3 using paraview. CUG
2008, May 2008.

[5] Kenneth Moreland, Brian Wylie, and Constan-
tine Pavlakos. Sort-last parallel rendering for
viewing extremely large data sets on tile displays.
In PVG ’01: Proceedings of the IEEE 2001 sym-
posium on parallel and large-data visualization
and graphics, pages 85–92, Piscataway, NJ, USA,
2001. IEEE Press.

[6] Brian Paul. The mesa 3d graphics library.
http://www.mesa3d.org/, May 2009.

[7] David Pugmire, Hank Childs, and Sean Ahern.
Parallel analysis and visualization on cray com-
pute node linux. CUG 2008, May 2008.

[8] Amy Henerson Squillacote. The ParaView
Guide. Kitware, Inc., 2007.

8 About The Authors

John Patchett has worked at the Advanced Com-
puting Laboratory at the Los Alamos National Lab
since 1999 exploring visualization hardware, prac-
tices and methods. Los Alamos National Labora-
tory, B287 PO Box 1663, Los Alamos, NM 87544,
patchett@lanl.gov

James Ahrens received his Ph.D. in Computer
Science in 1996 from the University of Washing-
ton. He is the Visualization Team Leader at
the Advanced Computing Laboratory where he has
worked since 1997. Los Alamos National Labora-
tory, B287 PO Box 1663, Los Alamos, NM 87544,
ahrens@lanl.gov

David Pugmire is a Computer Scientist in the
National Center for Computational Sciences at the
Oak Ridge National Laboratory. He Can be reached
at Oak Ridge National Laboratory, Building 5600,
Room B203, P.O. Box 2008 MS6008, Oak Ridge,
TN 37831-6008, E-Mail:pugmire@ornl.gov

Sean Ahern is the Visualization Task Leader in
the National Center for Computational Sciences at
Oak Ridge National Laboratory. He can be reached
at Oak Ridge National Laboratory, Building 5600,
Rm B205, P.O. Box 2008 MS6016, Oak Ridge, TN
37831-6016, E-Mail:ahern@ornl.gov

5

